EXCESS ENTHALPIES OF MIXING USING A MODIFIED AGSM APPROACH

G.A. PATHANJALI and R.P. SINGH *

Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208 016 (India) (Received 5 September 1984)

ABSTRACT

The temperature dependence of the interaction parameters of the Analytical Group Solution Model for excess enthalpies is modified. Interaction coefficients for 53 pairs of groups are reported. These may be used in predicting excess enthalpy data using the modified AGSM.

INTRODUCTION

Excess enthalpies of mixtures are important both for fundamental studies of the interaction energies and for the rational study of approximate models used in chemical engineering thermodynamics. Analytical group solution models give a method to predict thermodynamic properties of liquid mixtures from limited experimental data on reference systems. They are easy to use and give predictions of an acceptable accuracy for engineering design. Nguyen and Ratcliff [1], working with the Analytical Solution of Groups method, ASOG [2], for the calculation of activity coefficients in liquid mixtures, developed an Analytical Group Solution Model, AGSM, for the prediction of excess enthalpies. A set of group parameters different from that used for activity coefficients is required for reproducing experimental values of excess enthalpies, i.e., heats of mixing.

Lai et al. [3] have extended the AGSM by expressing the temperature dependence of group interaction parameters in terms of two temperature-independent group coefficients. In this work, the temperature dependence is modified and an expression analogous to that used in representing the group interaction parameters of the UNIFAC model [4,5] for activity coefficients is employed. This requires only one temperature-independent group coefficient and results in a saving in computing time. Interaction coefficients for 53 pairs of groups are obtained from experimental heats of mixing data for binary systems.

^{*} Author to whom correspondence should be addressed.

THEORETICAL BACKGROUND

The Analytical Group Solution Model, AGSM, for excess enthalpy of mixing was given by Nguyen and Ratcliff [1] as follows

$$h^{\rm E} = \sum_{i} x_i \sum_{k} \nu_{ki} \left(H_k - H_k^{(i)} \right)$$
(1)

where x_i is the mole fraction of pure component *i*, v_{ki} is the number of structural groups of type *k* in pure component *i* and the contribution to enthalpy of group *k* in solution, H_k , is evaluated from the following equation for the group activity coefficient τ_k employed in the Analytical Solution of Groups, ASOG, formulation [2] for activity coefficients.

$$\ln \tau_k = 1 - \sum_j \left(X_j a_{jk} / \sum_m X_m a_{jm} \right) - \ln \sum_j X_j a_{jk}$$
⁽²⁾

Here, the group fraction of group j in the mixture, X_j , is given by

$$X_{j} = \left(\sum_{i} x_{i} \nu_{ji}\right) / \left(\sum_{m} \sum_{i} x_{i} \nu_{mi}\right)$$
(3)

The resulting equation for H_k is obtained as

$$\frac{H_k}{RT^2} \doteq -\frac{\partial \ln \tau_k}{\partial T} = \sum_j X_j b_{kj} / \sum_k X_j a_{kj} + \sum_j \left(X_j b_{jk} / \sum_m X_m a_{jm} \right) - \sum_j \left[X_j a_{jk} \left(\sum_m X_m b_{jm} \right) / \left(\sum_m X_m a_{jm} \right)^2 \right]$$
(4)

The contribution to enthalpy of group k in pure component i, $H_k^{(i)}$, is also evaluated from eqn. (4), but using the following equation for the group fraction of group j in pure component i, instead of eqn. (3) for the group fractions.

$$X_j^{(i)} = \nu_{ji} / \sum_j \nu_{ji}$$
⁽⁵⁾

Two important steps should be noted in the derivation of the AGSM: the size contribution to the activity coefficient in the ASOG formulation has been considered to be independent of temperature and the group interaction parameters a_{jk} , unlike those in the original ASOG, have been considered to be temperature dependent with

$$b_{ik} \equiv \partial a_{ik} / \partial T \tag{6}$$

Lai et al. [3] have expressed the temperature dependence of the group parameters in terms of two temperature-independent group interaction coefficients as

$$a_{jk} = \exp\left(A'_{jk} + B'_{jk}/T\right) \qquad a_{jk} \neq a_{kj} \tag{7}$$

TABLE 1

Excess enthalpy data used to determine group interaction coefficients

Systems		No. of	Ref.	
Components	Temp. (K)	data points		
1-Hexanol– <i>n</i> -hexane	298.15	20	8	
1-Hexanol–2-				
methyl pentane	298.15	20	8	
Isobutanol-n-				
decanol	298.15	18	9	
Cyclopentane-				
tetrachloroethylene	298.15	39	10	
Benzene-cyclooctane	298.15	9	11	
Benzene-n-heptane	318.15	16	12	
Acetonitrile-benzene	298.15	16	12	
Acetonitrile-n-				
heptane	318.15	14	12	
Carbon tetrachloride-				
benzene	298.15	5	13	
Ethylbenzene-toluene	298.15-303.15	9	13	
Ethylformate-n-				
hexane	298.15	13	14	
Acetic acid-n-				
heptane	308.15	5	14	
Ethylformate-n				
butanol	298.15-318.15	19	14	
Ethanol-methyl-				
acetate	298.15-318.15	20	15	
Cyclopentane-	-/ 01-0		10	
carbon tetrachloride	288.15	5	16	
Cyclohexane-		-	10	
carbon tetrachloride	298 15-318 15	7	16	
Benzene-carbon				
tetrachloride	288.15-318.15	10	16	
Tetrachloroethane-		10	10	
cvclopentane	298.15	4	16	
Benzene-dichloro-	->0110	•	10	
methane	298.15-303.15	8	16	
Benzene-cyclohexane	298.15-323.15	7	16	
Benzene- <i>n</i> -xylene	298.15	4	16	
Benzene-chloroben-	->0.10	•	10	
zene	303 15-308 15	7	16	
Toluene-dichloro-		,	10	
methane	298.15-303.15	7	16	
o-Xylene-dichloro-		·	10	
methane	298 15-303 15	7	16	
Dichloromethane-	-/0.12 202.12		10	
tetrahydrofuran	303.15	19	17	
Carbon tetrachloride-			1 ,	
tetrahydrofuran	303.15	19	17	
J	· · · · · · ·		- ·	

TABLE 1 (continued)

Systems		No. of	Ref.
Components	Temp. (K)	data points	
Benzene-			
cyclohexanone	298.15	21	18
Triethylamine–			
n-hexane	298.15	19	19
Tetrahydrofuran-			
benzene	303.15	19	20
Benzene-triethyla-			
mine	298.15	11	21
Hexafluorobenzene-			
Triethylamine	298.15	19	22
Hexafluorobenzene-	200.15	10	
uleinyleiner Havafluaraharrana	298.15	19	22
dimethyleulforido	209 15	10	22
Chlorobenzeno	298.13	19	22
u hentane	202 15 212 15	<i></i>	
Chlorobenzene	293.13-313.15	57	23
henzene	203 15 212 15	57	22
Chlorobenzene-	275.15-515.15	57	23
toluene	293 15-313 15	57	23
Chlorobenzene-	275.15 515.15	57	23
carbon tetrachloride	293.15-313.15	57	23
Carbon disulfide-			20
cyclohexane	293.15	19	23
Carbon disulfide-			
toluene	293.15	19	23
Carbon disulfide-			
carbon tetrachloride	293.15	19	23
Benzaldehyde-			
benzene	298.15	7	24
Benzaldehyde-n-			
hexane	298.15	10	24
Carbon tetrachloride–		_	
<i>n</i> -neptane	298.15	7	20
Carbon tetrach-	209.15	7	
A cetic acid	298.15	7	20
evelobavana	308 15	7	14
Acetic acid_	306.13	1	14
methylacetate	308.15	7	14
Tetrahydrofuran-	200.12	1	14
cvclohexane	303.15	10	20
Hexafluorobenzene-	500110	••	20
acetone	298.15	12	22

ΤA	BI	LE	2

Temperature-independent group interaction coefficients, A_{jk} and A_{kj}

Main groups		Group interaction coef	ficients (K)
j	k	A _{jk}	A_{kj}
CH,	C=C	64.72	160.6
CH,	ArCH	-71.75	128.2
CH ₂	СуСН	-132.3	33.30
CH,	ОН	- 30.95	328.9
CH ₂	CO	-128.2	108.7
CH ₂	0	153.5	- 21.98
CH ₂	СНО	1028	110.3
CH,	COO	227.8	198.7
CH,	COOH	81.64	131.5
CH ₂	CN	103.8	327.8
CH ₂	N	362.7	176.5
CH,	NO ₂	70.50	97.17
CH ₂	CCI,	75.42	63.09
CH ₂	CCl	61.42	38.71
CH,	ArCl	97.37	- 125.1
CH ₂	ArF	47.29	96.17
CH,	CS ₂	86.21	109.3
CH,	so	60.74	71.83
C=Ĉ	Cl	9.160	-10.25
ArCH	СуСН	75.36	71.78
ArCH	OH	-140.1	446.4
ArCH	СО	83.83	107.4
ArCH	0	126.7	54.66
ArCH	СНО	35.70	143.0
ArCH	CN	62.40	154.6
ArCH	Ν	-102.7	26.81
ArCH	NO ₂	57.44	141.0
ArCH	CCl ₂	70.22	- 25.40
ArCH	CCl ₄	22.81	35.04
ArCH	ArCl	63.52	- 7.040
ArCH	ArF	142.5	95.78
ArCH	CS ₂	11.76	114.5
ArCH	SO	55.33	176.3
CyCH	CO	181.6	385.0
CyCH	0	132.1	323.9
CyCH	COOH	226.3	-23.80
СуСН	Cl	66.59	21.75
СуСН	CCl ₂	49.78	31.79
СуСН	CCl ₃	- 108.5	200.6
СуСН	CCl ₄	31.39	27.32
СуСН	ArCl	74.44	- 14.53
СуСН	CS ₂	46.16	83.94
OH	COO	684.4	948.7
CO	ArF	- 86.64	143.5
0	CCl ₂	- 20.69	193.6
0	CCl ₃	4.030	95.17

Main groups Group intera		Group interactio	n coefficients (K)	
j	k	$\overline{A_{jk}}$	A _{kj}	
0	CCl4	96.72	148.8	
0	ArF	174.4	133.5	
COO	COOH	17.60	85.36	
N	ArF	84.38	62.99	
CCl₄	ArCl	89.98	-16.78	
CCI	CS ₂	48.10	65.44	
ArF	so	93.21	167.2	

TABLE 2 (continued)

Thus, according to eqn. (6)

$$b_{ik} = -a_{ik}B'_{ik}/T^2$$
 (8)

It should be emphasized that the group parameters required by AGSM for predicting heats of mixing are different from the group parameters used by ASOG for predicting activity coefficients.

In this work, the temperature dependence of the group interaction parameter, a_{ik} , is expressed as

$$a_{ik} = \exp(-A_{ik}/T) \tag{9}$$

with b_{jk} given by eqn. (6). This formulation is analogous to that used in representing the group interaction parameters of the UNIFAC model [4,5] for activity coefficients, and results in a reduction in computing time.

REDUCTION OF DATA

We adopted the classification of functional groups described by Kojima and Tochigi [6]. The temperature-independent group interaction parameters, A_{jk} and A_{kj} , were determined from the experimental h^E data for the systems listed in Table 1. The simplex method [7] was used to obtain the parameters by minimizing the sum of squares of deviations in experimental and calculated h^E values for all data points.

RESULTS

Table 2 lists group interaction coefficients for 53 pairs of groups. The overall average value of the RMSRD (%) in $h^{\rm E}$ was 6.1 for the reference systems listed in Table 1.

CONCLUSION

The temperature dependence of the group interaction parameters in the extended AGSM has been modified. Interaction coefficients for 53 pairs of groups are obtained using experimental binary $h^{\rm E}$ data. These coefficients may be used in predicting $h^{\rm E}$ data using the modified AGSM.

NOMENCLATURE

a_{jk}	temperature-dependent group interaction parameter for the group pair $j - k$
A_{jk}	temperature-independent group interaction coefficient in
	eqn. (9) for the group pair $j - k$
A'_{jk}	temperature-independent group interaction coefficient in eqn. (7)
b_{ik}	derivative with respect to temperature of a_{ik}
\tilde{B}'_{ik}	temperature-independent group interaction coefficient in
5	eqn. (7) for the group pair $j - k$ (K)
h ^E	excess enthalpy $(J \text{ mol}^{-1})$
H_k	contribution to enthalpy of group k in solution
$H_k^{(i)}$	contribution to enthalpy of group k in pure component i
R	Universal gas constant $(J \text{ mol}^{-1} \text{ K}^{-1})$
RMSRD(%)	$100 \times \left[\frac{1}{\text{data points}} \Sigma \left(\frac{\text{experimental} - \text{calculated}}{\text{experimental}}\right)^2\right]^{1/2}$
Т	absolute temperature (K)
x_i	mole fraction of pure component <i>i</i>
X_i	group fraction of group j in solution
$ec{X_j^{(i)}}$	group fraction of group j in pure component i

Greek symbols

$\boldsymbol{\nu}_{ii}$	number of structural groups of type k in pure component i
τ_k	group activity coefficient of group k in solution

Subscripts

i	component
j,k,m	group

REFERENCES

1 T.H. Nguyen and G.A. Ratcliff, Can. J. Chem. Eng., 52 (1974) 641.

2 E.L. Derr and C.H. Deal, Inst. Chem. Eng. Symp. Ser. London, 3 (1969) 40.

- 3 T.T. Lai, T.H. Doan-Nguyen, J.H. Vera and G.A. Ratcliff, Can. J. Chem. Eng., 56 (1978) 358.
- 4 Aa. Fredenslund, R.L. Jones and J.M. Prausnitz, AIChE J., 21 (1975) 1086.
- 5 Aa. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria Using UNI-FAC, Elsevier, Amsterdam, 1977.
- 6 K. Kojima and K. Tochigi, Prediction of Vapor-Liquid Equilibria by the ASOG Method, Kodansha-Elsevier, Amsterdam, 1979.
- 7 J.A. Nelder and R. Mead, Comput. J., 7 (1965) 308.
- 8 F. Kimura and G.C. Benson, J. Chem. Eng. Data, 26 (1981) 317.
- 9 V.T. Lam, H.D. Pflug, S. Murakami and G.C. Benson, J. Chem. Eng. Data, 18 (1973) 63.
- 10 J. Polak, S. Murakami, V.T. Lam and G.C. Benson, J. Chem. Eng. Data, 15 (1970) 323.
- 11 R.C. Mitra, S.C. Guhaniyogi and S.N. Bhattacharya, J. Chem. Eng. Data, 18 (1973) 147.
- 12 D.A. Palmer and B.D. Smith, J. Chem. Eng. Data, 17 (1972) 71.
- 13 G. Lewis and A.F. Johnson, J. Chem. Eng. Data, 14 (1969) 484.
- 14 I. Nagata, M. Nagashima, K. Kazuma and M. Nakagawa, J. Chem. Eng. Jpn., 8 (1975) 261.
- 15 I. Nagata, T. Ohta and T. Takahashi, J. Chem. Eng. Jpn., 5 (1972) 227.
- 16 P.P. Singh, R.K. Nigam, V.K. Sharma, S.P. Sharma and K.C. Singh, Thermochim. Acta, 52 (1982) 87.
- 17 S. Dincer and H.C. Van Ness, J. Chem. Eng. Data, 16 (1971) 378.
- 18 K. Tamura, S. Murakami and R. Fujishiro, J. Chem. Thermodyn., 13 (1981) 47.
- 19 B. Budoo and R. Philippe, J. Chem. Thermodyn., 10 (1978) 1147.
- 20 R. Bolinaga, M. Gracia and C.G. Losa, J. Chem. Thermodyn., 10 (1978) 667.
- 21 B.I. Mattingley and D.V. Fenby, J. Chem. Thermodyn., 7 (1975) 307.
- 22 B.I. Mattingley, Y.P. Handa and D.V. Fenby, J. Chem. Thermodyn., 7 (1975) 169.
- 23 B.S. Harsted and E.S. Thomsen, J. Chem. Thermodyn., 7 (1975) 369.
- 24 I. Ferino, B. Marongiu, V. Solinas, S. Torrazza and H.V. Kehiaian, Thermochim. Acta, 57 (1982) 147.